ADVANCED SUBSIDIARY GCE UNIT
 MATHEMATICS (MEI)

Further Concepts for Advanced Mathematics (FP1)

THURSDAY 18 JANUARY 2007

Additional materials:
Answer booklet (8 pages)
Graph paper
MEI Examination Formulae and Tables (MF2)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- \quad The total number of marks for this paper is 72 .

ADVICE TO CANDIDATES

- Read each question carefully and make sure you know what you have to do before starting your answer.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.

This document consists of 4 printed pages.		
HN/4	O OCR $2007[\mathrm{D} / 102 / 2663]$	OCR is an exempt Charity

1 Is the following statement true or false? Justify your answer.

$$
\begin{equation*}
x^{2}=4 \text { if and only if } x=2 \tag{2}
\end{equation*}
$$

2 (i) Find the roots of the quadratic equation $z^{2}-4 z+7=0$, simplifying your answers as far as possible.
(ii) Represent these roots on an Argand diagram.

3 The points A, B and C in the triangle in Fig. 3 are mapped to the points $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$ and C^{\prime} respectively under the transformation represented by the matrix $\mathbf{M}=\left(\begin{array}{ll}2 & 0 \\ 0 & \frac{1}{2}\end{array}\right)$.

Fig. 3
(i) Draw a diagram showing the image of the triangle after the transformation, labelling the image of each point clearly.
(ii) Describe fully the transformation represented by the matrix \mathbf{M}.

4 Use standard series formulae to find $\sum_{r=1}^{n} r\left(r^{2}+1\right)$, factorising your answer as far as possible. [6]

5 The roots of the cubic equation $2 x^{3}-3 x^{2}+x-4=0$ are α, β and γ.
Find the cubic equation whose roots are $2 \alpha+1,2 \beta+1$ and $2 \gamma+1$, expressing your answer in a form with integer coefficients.

6 Prove by induction that $\sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1)$.

Section B (36 marks)
7 A curve has equation $y=\frac{5}{(x+2)(4-x)}$.
(i) Write down the value of y when $x=0$.
(ii) Write down the equations of the three asymptotes.
(iii) Sketch the curve.
(iv) Find the values of x for which $\frac{5}{(x+2)(4-x)}=1$ and hence solve the inequality

$$
\begin{equation*}
\frac{5}{(x+2)(4-x)}<1 \tag{5}
\end{equation*}
$$

8 It is given that $m=-4+2 \mathrm{j}$.
(i) Express $\frac{1}{m}$ in the form $a+b \mathrm{j}$.
(ii) Express m in modulus-argument form.
(iii) Represent the following loci on separate Argand diagrams.
(A) $\arg (z-m)=\frac{\pi}{4}$
(B) $0<\arg (z-m)<\frac{\pi}{4}$

9 Matrices \mathbf{M} and \mathbf{N} are given by $\mathbf{M}=\left(\begin{array}{ll}3 & 2 \\ 0 & 1\end{array}\right)$ and $\mathbf{N}=\left(\begin{array}{rr}1 & -3 \\ 1 & 4\end{array}\right)$.
(i) Find \mathbf{M}^{-1} and \mathbf{N}^{-1}.
(ii) Find $\mathbf{M N}$ and $(\mathbf{M N})^{-\mathbf{1}}$. Verify that $(\mathbf{M N})^{-1}=\mathbf{N}^{-1} \mathbf{M}^{-1}$.
(iii) The result $(\mathbf{P Q})^{-1}=\mathbf{Q}^{-1} \mathbf{P}^{-1}$ is true for any two 2×2, non-singular matrices \mathbf{P} and \mathbf{Q}.

The first two lines of a proof of this general result are given below. Beginning with these two lines, complete the general proof.

$$
\begin{align*}
& (\mathbf{P Q})^{-1} \mathbf{P Q}=\mathbf{I} \\
\Rightarrow & (\mathbf{P Q})^{-1} \mathbf{P Q Q}{ }^{-1}=\mathbf{I Q}^{-1} \tag{4}
\end{align*}
$$

