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Section A (36 marks)

1 Is the following statement true or false? Justify your answer.

if and only if [2]

2 (i) Find the roots of the quadratic equation simplifying your answers as far as
possible. [4]

(ii) Represent these roots on an Argand diagram. [2]

3 The points A, B and C in the triangle in Fig. 3 are mapped to the points , and respectively

under the transformation represented by the matrix 

Fig. 3

(i) Draw a diagram showing the image of the triangle after the transformation, labelling the
image of each point clearly. [4]

(ii) Describe fully the transformation represented by the matrix M. [3]

4 Use standard series formulae to find factorising your answer as far as possible. [6]

5 The roots of the cubic equation are a , b and g .

Find the cubic equation whose roots are expressing your answer in a
form with integer coefficients. [7]

6 Prove by induction that [8]�
n
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r2

� 1
6 n(n � 1) (2n � 1).

2a � 1, 2b � 1 and 2g � 1,

2x3 � 3x2 � x � 4 � 0
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z2 � 4z � 7 � 0,

x � 2x2 � 4
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Section B (36 marks)

7 A curve has equation 

(i) Write down the value of y when [1]

(ii) Write down the equations of the three asymptotes. [3]

(iii) Sketch the curve. [3]

(iv) Find the values of x for which and hence solve the inequality

[5]

8 It is given that 

(i) Express in the form [2]

(ii) Express m in modulus-argument form. [4]

(iii) Represent the following loci on separate Argand diagrams.

(A) [2]

(B) [3]

9 Matrices M and N are given by and 

(i) Find M–1 and N–1. [3]

(ii) Find MN and Verify that [6]

(iii) The result is true for any two 2 ¥ 2, non-singular matrices P and Q.

The first two lines of a proof of this general result are given below. Beginning with these two
lines, complete the general proof.

[4]

PQ PQ I

PQ PQQ IQ

( ) =

fi ( ) =

-

- - -

1

1 1 1

(PQ)�1 � Q�1P�1

(MN)�1 � N�1M�1.(MN)�1.

N =
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Ë
ˆ
¯

1 3
1 4

.M = Ê
Ë

ˆ
¯

3 2
0 1

0 � arg (z � m) �
p
4

arg (z � m) �
p
4

a � bj.
1
m

m � �4 � 2j.

5
(x � 2) (4 � x) � 1.

5
(x � 2) (4 � x) � 1

x � 0.

y �
5

(x � 2) (4 � x) .
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