

ADVANCED SUBSIDIARY GCE UNIT MATHEMATICS (MEI)

4755/01

Further Concepts for Advanced Mathematics (FP1)

THURSDAY 18 JANUARY 2007

Afternoon Time: 1 hour 30 minutes

Additional materials:
Answer booklet (8 pages)
Graph paper
MEI Examination Formulae and Tables (MF2)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.
- · Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.

ADVICE TO CANDIDATES

- Read each question carefully and make sure you know what you have to do before starting your answer.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.

This document consists of 4 printed pages.

© OCR 2007 [D/102/2663]

OCR is an exempt Charity

[Turn over

2

Section A (36 marks)

1 Is the following statement true or false? Justify your answer.

$$x^2 = 4$$
 if and only if $x = 2$ [2]

- 2 (i) Find the roots of the quadratic equation $z^2 4z + 7 = 0$, simplifying your answers as far as possible. [4]
 - (ii) Represent these roots on an Argand diagram. [2]
- 3 The points A, B and C in the triangle in Fig. 3 are mapped to the points A', B' and C' respectively under the transformation represented by the matrix $\mathbf{M} = \begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$.

Fig. 3

- (i) Draw a diagram showing the image of the triangle after the transformation, labelling the image of each point clearly. [4]
- (ii) Describe fully the transformation represented by the matrix **M**. [3]
- 4 Use standard series formulae to find $\sum_{r=1}^{n} r(r^2 + 1)$, factorising your answer as far as possible. [6]
- 5 The roots of the cubic equation $2x^3 3x^2 + x 4 = 0$ are α , β and γ .

Find the cubic equation whose roots are $2\alpha + 1$, $2\beta + 1$ and $2\gamma + 1$, expressing your answer in a form with integer coefficients. [7]

6 Prove by induction that
$$\sum_{r=1}^{n} r^2 = \frac{1}{6}n(n+1)(2n+1)$$
. [8]

© OCR 2007 4755/01 Jan 07

3

Section B (36 marks)

7 A curve has equation $y = \frac{5}{(x+2)(4-x)}$.

- (i) Write down the value of y when x = 0. [1]
- (ii) Write down the equations of the three asymptotes. [3]
- (iii) Sketch the curve. [3]
- (iv) Find the values of x for which $\frac{5}{(x+2)(4-x)} = 1$ and hence solve the inequality

$$\frac{5}{(x+2)(4-x)} < 1. ag{5}$$

8 It is given that m = -4 + 2j.

(i) Express
$$\frac{1}{m}$$
 in the form $a + bj$. [2]

- (ii) Express m in modulus-argument form. [4]
- (iii) Represent the following loci on separate Argand diagrams.

$$(A) \arg(z-m) = \frac{\pi}{4}$$

(B)
$$0 < \arg(z - m) < \frac{\pi}{4}$$
 [3]

9 Matrices **M** and **N** are given by $\mathbf{M} = \begin{pmatrix} 3 & 2 \\ 0 & 1 \end{pmatrix}$ and $\mathbf{N} = \begin{pmatrix} 1 & -3 \\ 1 & 4 \end{pmatrix}$.

(i) Find
$$\mathbf{M}^{-1}$$
 and \mathbf{N}^{-1} .

- (ii) Find MN and $(MN)^{-1}$. Verify that $(MN)^{-1} = N^{-1}M^{-1}$. [6]
- (iii) The result $(\mathbf{PQ})^{-1} = \mathbf{Q}^{-1}\mathbf{P}^{-1}$ is true for any two 2×2 , non-singular matrices \mathbf{P} and \mathbf{Q} .

The first two lines of a proof of this general result are given below. Beginning with these two lines, complete the general proof.

$$(\mathbf{PQ})^{-1}\mathbf{PQ} = \mathbf{I}$$

$$\Rightarrow (\mathbf{PQ})^{-1}\mathbf{PQQ}^{-1} = \mathbf{IQ}^{-1}$$
[4]

© OCR 2007 4755/01 Jan 07